2 00 2 “ The p - chain spectral sequence ”

نویسندگان

  • James F. Davis
  • Wolfgang Lück
چکیده

We introduce a new spectral sequence called the p-chain spectral sequence which converges to the (co-)homology of a contravariant C-space with coefficients in a covariant C-spectrum for a small category C. It is different from the corresponding Atiyah-Hirzebruch type spectral sequence. It can be used in combination with the Isomorphism Conjectures of Baum-Connes and Farrell-Jones to compute algebraic Kand L-groups of group rings and topological K-groups of reduced group C-algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 1 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

A new family in the stable homotopy groups of spheres

Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...

متن کامل

Ju l 2 00 1 E ∞ - STRUCTURES AND DIFFERENTIALS OF THE ADAMS SPECTRAL SEQUENCE

The Adams spectral sequence was invented by J.F.Adams [1] almost fifty years ago for calculations of stable homotopy groups of topological spaces and in particular of spheres. The calculation of differentials of this spectral sequence is one of the most difficult problem of Algebraic Topology. Here we consider an approach to solve this problem in the case of Z/2 coefficients and find inductive ...

متن کامل

Independent Unbiased Coin Flips From a Correlated Biased Source: a Finite State Markov Chain

von Neumann’s trick for generating an absolutely unbiased coin from a biased one is this: 1. Toss the biased coin twice, getting 00, 01, 10, or 11. 2. If 00 or 11 occur, go back to step 1; else 3. Call 10 a H, 01 a T. Since p[H] = p[l]*p[O] = p[T], the output is unbiased. Example: 00 10 11 01 01 + H T T. Peter Elias gives an algorithm to generate an independent unbiased sequence of Hs and Ts th...

متن کامل

ar X iv : 0 70 8 . 33 38 v 1 [ m at h . PR ] 2 4 A ug 2 00 7 Ergodic properties of a class of non - Markovian processes

We study a fairly general class of time-homogeneous stochastic evolutions driven by noises that are not white in time. As a consequence, the resulting processes do not have the Markov property. In this setting, we obtain constructive criteria for the uniqueness of stationary solutions that are very close in spirit to the existing criteria for Markov processes. In the case of discrete time, wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002